ALPHA-CARBON COORDINATES FOR BOVINE CU, ZN SUPEROXIDE DISMUTASE

Jane S. Richardson[†], Kenneth A. Thomas^{*}, and David C. Richardson^{*}

Department of Biochemistry and [†]Department of Anatomy, Duke University, Durham, North Carolina 27710.

Received February 26,1975

Summary Preliminary α -carbon and metal coordinates are given for a subunit of the bovine erythrocyte Cu⁺⁺, Zn⁺⁺ superoxide dismutase. The coordinates are averaged from 5 sets of measurements made on electron density maps at 3Å resolution: one set from an averaged map and one set from each of the 4 crystallographically independent subunits (2 dimeric molecules) in the asymmetric unit of the crystal. The 3-dimensional structure of the polypeptide backbone is illustrated and briefly described.

The methods and the general results of the x-ray crystallographic investigation of bovine $\text{Cu}^{++}, \text{Zn}^{++}$ superoxide dismutase to 3\AA resolution have been described elsewhere (1). The course of the polypeptide backbone chain has been traced and the metal ligands identified. Although the crystallographic work will be continued to higher resolution, preliminary α -carbon coordinates are listed here for the use of anyone wishing to make backbone models, drawings, or approximate distance calculations.

Bovine Cu, Zn superoxide dismutase crystallizes in space group C2, with 4 subunits (2 molecules) per asymmetric unit. At 3Å resolution the backbone conformation appears to be identical for all 4 crystallographically independent subunits. α -carbon, copper, and zinc coordinates were measured from the electron density map for each of the 4 subunits. An averaged map was calculated by transforming, interpolating, and averaging the numerical output of the Fourier calculation, and a set of coordinates was measured from the averaged map. All 5 coordinate sets were transformed to a common Cartesian coordinate system with the local twofold axis of the dimer along the y axis. The 5 sets were averaged, and dis-

	x	у	z		x	У	z			x	У	z
Ala l		-13.8	4.1	Asn 51			-1.5	Leu	101	-2.0	-14.9	15.3
Thr 2		-12.7	6.7	Thr 52			-3.2		102		-13.3	12.8
Lys 3 Ala 4	8.9 6.8	-8.6 -5.5	6.7 7.0	Gln 53 Gly 54		6.0 7.0	-1.4 1.0		103		-14.7	9.8 7.2
Val 5	5.7	-2.2	5.7	Cys 55		5.3	3.9		105		-13.6 -16.4	5.2
Cysh 6	3.3	0.0	6.8	Thr 56		4.8	3.4		106		-17.6	4.3
Val 7	2.5	3.4	6.2		-12.4	2.1	1.7		107		-17.6	5.3
Leu 8	0.5	5.7	7.3	Ala 58		0.0	3.5		108		-15.2	7.5
Lys 9 Gly 10	-0.9 -3.7	$8.4 \\ 11.2$	6.0 5.8	Gly 59 Pro 60		-1.9 -3.8	5.2 7.5		109	-2.2	-12.6 -9.2	5.9 6.4
Asp 11	-6.3	13.8	5.9		-12.4		10.1		111	-0.9	-8.2	3.2
Gly 12	-5.0	15.4	8.3	Phe 62	-10.6	-9.0	9.8		112	-2.7	-6.2	1.4
Pro 13	-2.6				-12.1		10.7		113	-4.1	-5.0	3.8
Val 14 Gln 15	-1.2 1.7	12.1	11.2		-12.1 -13.8		9.7		114	-4.9	-2.4	5.7
Gly 16	3.3		10.3		-16.5				115 116	-3.7 -5.6	-0.9	8.7 10.8
Thr 17	5.5		10.5		-16.2				117	-5.6		13.0
Ile 18	5.2		10.6		-16.7				118	-8.6	5.6	14.9
His 19	7.0		11.4	His 69			18.8		119	-9.8		17.3
Phe 20 Glu 21	6.1 8.0		11.0	Gly 70 Gly 71			20.7			-10.8 -10.3	6.9 4.6	20.1 22.0
Ala 22			11.5	Pro 72			21.7			-11.1		22.0
Lys 23	9.2	-14.6	14.0	Lys 73		-11.3				-13.2	-0.8	24.0
Gly 24	7.6	-17.6		Asp 74		-12.8				-12.0	-3.9	23.7
Asp 25 Thr 26		-18.1 -15.1		Glu 75	-11.3 -13.1					- 1 5.1	-5.6 -4.9	23.6
Val 27	3.8	-11.8			-10.9					-19.2	-2.1	
Val 28	5.6		16.3		-10.9					-23.3	-2.5	25.4
Val 29	5.0		16.1	Val 79		-11.0				-23.6	-1.7	
Thr 30 Gly 31	6.7 6.6		15.9 15.7	Gly 80			13.4			-23.9	-2.7	
Ser 32	5.9	1.0	15.6	Asp 81 Leu 82		-6.8 -5.6	16.3 17.8			-20.7 -19.0	-1.2 -3.3	18.3 19.7
Ile 33	3.3		15.5	Gly 83			20.0			-19.4	-5.7	18.2
Thr 34	2.9		15.4	Asn 84		0.3				-18.3	-4.4	15.4
Gly 35	0.1		15.1	Val 85			21.2			-16.0		16.7
Leu 36 Thr 37	-2.1 -4.7	12.8 13.0	18.0	Thr 86 Ala 87			23.6			-15.2 -16.0	-0.1 2.7	19.2 19.2
Glu 38	-4.2		23.8	Asp 88			23.9			-13.1		17.6
Gly 39	-4.2	9.0	23.9	Lys 89		15.9				-14.0	5.7	15.2
Asp 40	-5.6		23.1	Asn 90		16.7				-12.9		13.0
His 41 Gly 42	-6.1 -6.7		20.0	Gly 91 Val 92		13.8	19.8 19.7		141	-10.4 -7.2	6.8 8.5	11.1
Phe 43	-5.8		16.1	Ala 93			19.8		143	-4.4	7.2	9.6
His 44	-6.9		14.5	Ile 94			20.4		144	-3.9	4.8	7.2
Val 45	-6.5		11.1	Val 95			18.9		145	-2.2	2.6	5.4
His 46 Glu 47	-8.9 -9.9	-3.9 -6.1	7.9 4.9	Asp 96 Ile 97		-2.8 -6.0			146 147	-1.1 0.8	-0.3 -3.3	3.0 4.1
Phe 48	-8.8	-4.4	2.3	Val 98			20.0		148	3.6	<u>-</u> 3.3	2.8
Gly 49	-6.8	-2.5	0.9	Asp 99			18.4		149	6.2	-6.8	2.2
Asp 50	-8.0	0.1	-1.3	Pro 10	0 -0.5	-14.5	18.0		150	9.9	-6.5	3.6
Cu	-10.4	-0.6	13.2	Zn	-12.2	-5.7	15.4	Lys	151	13.6	-7.0	3.5

Table I - Averaged α -carbon and metal coordinates for a subunit of bovine Cu,Zn superoxide dismutase. Coordinates are orthogonal and in A. The transformation to obtain coordinates for the second subunit of a dimer molecule is: x'=x, y'=y, z'=z.

crepancies were reexamined on the individual electron density maps. The root mean square errors between the individual coordinate sets and the averaged coordinates given in Table I are between 0.8 and 0.9Å. No attempt has been made to refine these co-

dihed- ral bend angle angl	Ca-Ca dist. e Å	C	dihed- ral angle		Cα-Cα dist. ∍ A		(dihed- ral bend angle angle	Ca-Ca dist. A
(180°)			151°		3.3			135°	3.6
Ala l (71°		26	40	530	2 0	Asn	51	780	2 2
Thr 2 70°	3.1 Val	27		620	3.8	Thr	52	226° 64°	3.3
78° Lys 3 33°	4.0 V=1	. 28	209°	47°	3.6	Gln	5 2	262° 88°	3.4
306°	3.8		61°		3.6			1650	3.3
Ala 4 30°	Val	. 29	241°	390	3.4	Gly	54	55° 126°	3.4
Val 5 50°	Thr	30		32°		Cys	55	104°	2 1
288° Cysh 6 44°	3.4 Gly	31	246°	90	3.5	Thr	56	217° 83°	3.4
117° Val 7 40°	3.6	32	2420	350	3.5	Ser	57	279° 71°	3.1
3240	3.2		620		3.5			90	3.1
Leu 8 46°	I1∈ 3.3	3 3	237°	42°	4.0	Ala	58	65° 208°	3.2
Lys 9 28°	Thr	34		420		Gly	59	26°	
161° Gly 10 2°	4.0 Gly	35	294°	75°	3.9	Pro	60	206° 39°	3.2
197° Asp 11 85°	3.6	. 26	117°	190	3.7	His	6.1	122° 56°	3.5
185°	3.2	ı 36	3240	190	3.4	nis	οт	180	3.8
Gly 12 36°	Thr	37	2470	62°	3.8	Phe	62	65° 164°	2.9
Pro 13 70°	Glu	38		71°		Asn	63	52°	
284° Val 14 31°	3.5 Gly	7 39	201°	330	2.9	Pro	64	341° 52°	2.9
120°	3.7		266°		3.1			16°	3.3
Gln 15 23°	3.4	40	63°	480	3.5	Leu	65	83° 297°	3.3
Gly 16 14°	His 3.5	3 41	3560	20°	3.3	Ser	66	62° 73°	3.4
Thr 17 45°		42		280	3.3	Lys	67	22°	
326° Ile 18 39°	3.6 Phe	43	161°	380	3.2	Lys	68	330° 41°	3.6
152°	3.5		288°		2.8	_		261°	3.5
His 19 50°	3.7	44	1740	37°	3.8	His	ь 9	49° 22°	3.0
Phe 20 46°	Va]	L 45	220	51°	4.0	Gly	70	21° 319°	3.4
Glu 21 33°		3 46		40°	4.0	Gly	71	35°	3.4
19° Ala 22 61°	3.5	1 47	269°	770	3.8	Pro	72	233° 83°	3.5
164°	3.3		298°		3.3			253°	3.4
Lys 23 65°	Ph∈ 3.5	48	163°	26°	3.2	Lys	73	64° 1°	3.7
Gly 24 54°	Gly	, 49		590		Asp	74	42°	
73° Asp 25 90°	3.6 As _ī	50	298°	510	3.6	Glu	75	251° 93°	3.5

Table II - The bend angles and α -carbon to α -carbon distances needed to construct a wire backbone model (2) of the bovine Cu,Zn superoxide dismutase subunit. Such a model is shown in Fig. 4.

ordinates or to adjust them to give standard $C\alpha$ - $C\alpha$ distances.

Table I lists these averaged coordinates for the 151 α -carbons, the copper, and the zinc of one subunit of Cu,Zn super-oxide dismutase; Table II lists the bend angles, dihedral angles,

		ihed- ral l angle a		Ca-Ca dist.			ihed- ral angle		Ca-Ca dist. e A			ihed- ral angle		Cα-Cα dist.
0.3	7.0	313°	200	3.2			210°	5 7 °	3.1		100	123°		3.3
Glu	/ Ь	9 90	78°	3.3	Leu	101	326°		3.1	Arg	126	2470	5 9 °	3.3
Arg	77	315°	43°	3.3	Ile	102	173°	53°.	3.5	Gly	127	1370	640	4.0
His	78		56°		Ser	103	_	43°		Gly	128		82°	3.3
Val	79	1980	870	3.7	Leu	104	35 9°	810	3.4	Asn	129	2310	32°	
Gly	8.0	248°	70°	3.1	Ser	105	51°	550	3.5	Glu	130	122°	920	3.6
-		0°	490	3.1			340	410	3.0	G1u		195°	810	3.6
Asp		136°		2.9	-	106	400	-	3.6			259°	_	3.0
Leu	82	1°	48°	3.6	Glu	107	97≎	930	3.3	Ser	132	318°	76°	2.8
Gly	83	50	13°	3.5	Tyr	108	2480	71°	3.4	Thr	133	3450	85°	3.3
Asn	84	•	490		Ser	109		45°		Lys	134		79°	
Val	85	206°	52°	3.3	Ile	110	840	810	3.5	Thr	135	327°	36°	3.7
Thr	86	72°	490	3.7	Ile	111	203°	58°	3.6	Glv	136	223°	62°	3.1
Ala		291°	250	3.7		112	226°	86°	3.1	Asn		134°	90°	3.0
		146°		4.5	•		3480		3.0			268°		3.5
Asp	88	250	36°	3.6	Arg	113	252°	29°	3.3	Ala	138	930	75°	3.3
Lys	89	60°	83°	3.0	Thr	114	920	43°	3.7	Gly	139	119°	400	2.8
Asn	90	338°	85°	3.8	Met	115	3 0 6 °	56°	3.5	Ser	140	70	440	3.3
Gly	91		50°		Val	116		33°		Arg	141		42°	
Val	92	106°	200	3.4	Val	117	128°	530	3.7	Leu	142	152°	51°	3.6
Ala	93	312°	27°	4.1	His	118	310°	36°	3.7	Ala	143	198°	550	3.2
Ile	Q II	164°	460	3.6			1920		3.9			28°		3.4
		220		3.5		119	226°	73°	3.4	•	144	196°	230	3.4
Val	95	177°	58°	3.5	Lys	120	1470	36°	3.0	Gly	145	71°	15°	3.9
Asp	96	322°	530	3.7	Pro	121	340	440	3.5	Val	146	302°	570	3.7
Ile	97		32°		Asp	122		470		Ile	147		490	
Val	98	142°	680	4.0	Asp	123	237°	740	3.5	Gly	148	134°	18°	3.3
Asp	99	328°	460	3.3	Len	124	960	810	3.3	-	149	32°	540	3.5
		177°		3.4			480		3.5			242°		4.0
Pro	ΤÜŊ		69°		σту	125		60°			150	(62°	26°	3.7
										Lys	151		(71°)	1

and $C\alpha$ - $C\alpha$ distances needed for constructing a wire backbone model (2) such as the one shown in Fig. 4. The amino acid sequence is from Steinman, Naik, Abernethy, and Hill (3).

Figures 1-3 illustrate the α -carbon backbone conformation of the Cu,Zn superoxide dismutase subunit from the averaged coordi-

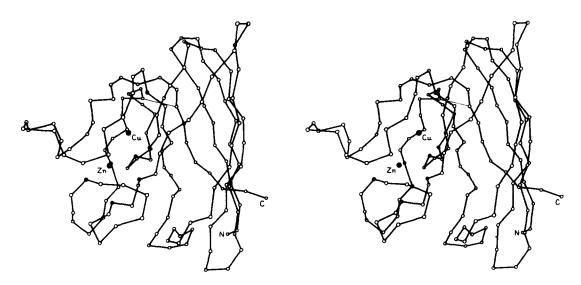


Fig. 1 - Stereo drawing of the α -carbon backbone of the Cu,Zn superoxide dismutase subunit, viewed down the +z coordinate axis. Both here and in Fig. 2 the disulfide bridge is indicated by a thin line, and the α -carbons of the 7 residues which contribute ligands to the metals are shown as solid circles.

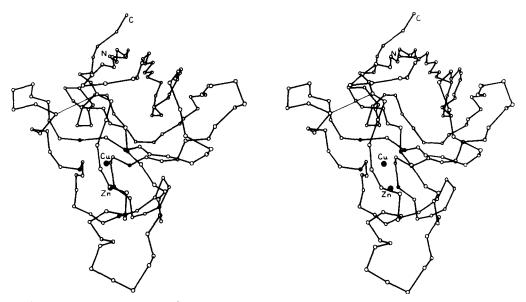


Fig. 2 - Stereo drawing of the α -carbon backbone of the Cu,Zn superoxide dismutase subunit. The direction of view is about 20° away from the +y coordinate axis (the local twofold axis of the dimer) and approximately down the axis of the β barrel.

nates. They are redrawn from plots produced by Carroll Johnson's ORTEP program. The dominant structural feature of this molecule

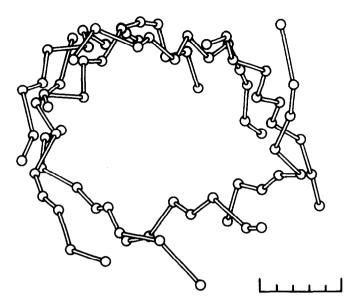


Fig. 3 - The 8 strands of antiparallel β structure in Cu,Zn superoxide dismutase, viewed from one end of the β barrel. The line at the lower right is a scale in A. The residues included are 2-11, 13-24, 25-35,38-46,80-88,91-100,113-118, and 142-150.

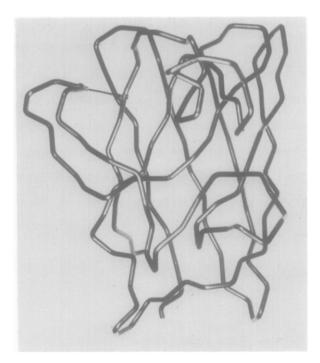


Fig. 4 - Photograph of a wire backbone model of the Cu, Zn super-oxide dismutase produced from the bend angles and distances listed in Table II. The disulfide bridge (at upper left) is indicated by a thin wire. The direction of view is approximately down the -x coordinate axis, perpendicular to the views in Fig. 1 and 2.

is an 8-stranded barrel of antiparallel ß structure, which is viewed from one end in Fig. 3, showing the fairly smooth curvature and the slight flattening from top to bottom. In Fig. 1, where the barrel is shown from one side, it can be seen that the spacing between most of the β strands is quite close and uniform (probably indicating extensive hydrogen bonding), but that the 2 strands in front are rather far apart. Diamond-shaped patterns are produced in Fig. 4 by the characteristic twist of the β sheet, which causes the front set of 4 ß strands to cross the back set of 4 β strands at an angle of about 45° in that projection.

The one very short section of α -helix is directly below the Zn in Fig. 2, on one of the two exposed external loops. The copper and zinc are only 6Å apart, with a common histidine ligand, and they are bound between the external loops and one side of the β barrel. The copper ligands are from His 44, His 46, His 61, and His 118; the zinc ligands are from His 61, His 69, His 78, and Asp There is a disulfide bridge between Cys 55 and Cys 144. The interaction between the 2 subunits of a dimer is discussed and illustrated in reference (1). In Fig. 2, which is viewed almost down the local twofold axis, the second subunit would lie above and to the left of the one shown, with residues 1, 5-7, 17, 47-52, 105-113, and 145-151 at the contact surface.

ACKNOWLEDGEMENTS

This work was supported by grant GM 15000 from the National Institutes of Health.

REFERENCES

- Richardson, J. S., Thomas, K. A., Rubin, B. H., and Richardson,
 D. C. (1975) Proc. Nat. Acad. Sci. USA, in press.
- 2. Rubin, B. H., and Richardson, J. S. (1972) Biopolymers 11, 2381-2385.
- 3. Steinman, H. M., Naik, V. R., Abernethy, J. L., and Hill, R. L. (1974) J. Biol. Chem. 249, 7326-7338.